武田 利一様

数列の規則性は? (続き)を作りました。
mod=10 P=60=5×12の表をたま
たま作ったところ、とこもきれいなタテ方向
の規則性が現われました。どういう条件を満
たすとこのようになるのかは、まだわかりま
せん。mod=5 P=20=5×4の表しか
いまのところてがかりはありません。

mod=8 P=12=4×3 a表は、他の 規則性を示しています。

すでに研究されていることだと思います。もしよろしければ、お知らせ下さい。

2

数列の規則性は? (続き)

0.1.1.2.3.5.8.3.1.4.

5.9.4.3.7.0.7.7.4.1.

5, 6, 1, 7, 8, 5, 3, 8, 1, 9,

0. 9. 9. 8. 7

周期のある数列です。条件(mod) を変化させて、周期(P)の長さを調べて みて下さい。

と変化させるとどうでしょうか。

数列の作り方

条件(mod=10)a場合について 前2つa数を加えます。

10より大きくなったら10を引きます。

5+8=13 13-10=3

0. 1. 1. 2. 3. 5. 8. 3. 1. 4 5. 9. 4. 3. 7. 0. 7. 7. 4. 1. 5. 6. 1. 7. 8. 5. 3. 8. 1. 9. 0. 9. 9. 8. 7. 5. 2. 7. 9. 6. 5. 1. 6. 7 3. 0. 3. 3. 6. 9. 5. 4. 9. 3. 2. 5. 7. 2. 9. 1. 0. 1. 1. 2. 3.

閉期(P)は60です。

mod=10 P=60=10×6の表

3

/

mod=10 P=60=5×12 n表

mod = 5 P= 20 = 5x 4 a 表

mod = 10 P=60 = 5×12の表が 結晶構造を 示していたので他の場合について、小し調べて みました。 4

末完成のレポートです。

筆算 による 割算

(B)
$$8 \sqrt{3}$$
 $8 \times 0 = 0$ $8 \times 1 = 8$ $8 \times 3 = 24$ $8 \times 5 = 40$ $8 \times 7 = 56$ $8 \times 9 = 72$

(C)
$$0.213$$
 $8)3$
 -0
 8×0
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213
 0.213

$$\frac{2}{6^{3}} + \frac{1}{6^{2}} + \frac{3}{6^{3}}$$

$$= \frac{72 + 6 + 3}{6^{3}}$$

$$= \frac{81}{6^{3}} = \frac{3^{4}}{6^{3}} = \frac{3}{8}$$

(E)

(D)
$$7 - 0$$
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.142857
 0.10
 0.14287
 0.10
 0.14287
 0.10
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287
 0.14287

6

3÷8を筆質で行ないます。普通は(A)のように 書きます。詳しく書くと(B)になります。

3よりも8の大が大きいので 1の位は0 になります。3を10倍すると30になります。

8 α 倍数を考えます。 30をこえない もっとも 大きな8の倍数は24です。8の3倍です。 0.1 a位は3になります。

24の30に不足する分であるらを10倍します。 60をこえないもっとも大きな8の倍数は56です。 80ク倍なので、0.0しの位はクになります。 56の60に不足する分である4を10倍します。 40は8の5倍です。0.001の位は、5と なります。不足分はありませんので、害りりわれ ました。

3:8の答は 0.375となりました。

(C) は X10 の部分を X6 に変えたものです。 3÷8 a答は 0.213 になります。 分数を使って表わします。

を計算するとるになります。

$$\frac{3}{8} = \frac{3}{10!} + \frac{10^2}{11} + \frac{10^3}{5}$$

$$\frac{3}{8} = \frac{2}{6!} + \frac{1}{6^2} + \frac{3}{6^3}$$
 6 3 6 1 1 2 1 2

X10, X6 & XN ET3=E3 N進法の計算になります。

筆算による割算は進法の考え方を利用したものと 考えることができます。

7

(D) は割り切れない場合の例です。 不足分(あまり)に注目します。 1:7 の場合(+進法)は 1 - 3 - 2 - 6 - 4 - 5 - 1 となります。

あまりに同じ数があらわれると、同じ計算が くり返されます。

1+7= 0.142857 142857 142 ... 割り切れない場合に循環小数となる理由は ここにあります。

同時に循環する数字の長さの最大も示され ます。クで割る場合で割り切れない場合の あまりは、1,2,3,4,5,6 の6種類 ですから最大の長さは6となります。

ロ、1 から始まる数列です。 横に数字をちつ並べました。10個の場合とは

周期のある数列です。

異、た顔を見せてくれました。

(D) と(E) をむすびつけるものは、周期の長さを 決める規則性にあります。

[レポートを書く上を注意したこと]

筆算による割算の構造を十進法以外の場合の計算を 行なうことで明らかにしようとしました。

割りわれる場合と割り切れない場合のちがいに ついて説明しました。

〔新いくわかったこと〕

(E) の表では、横だけでなく、縦の方向においても 規則性が現われました。