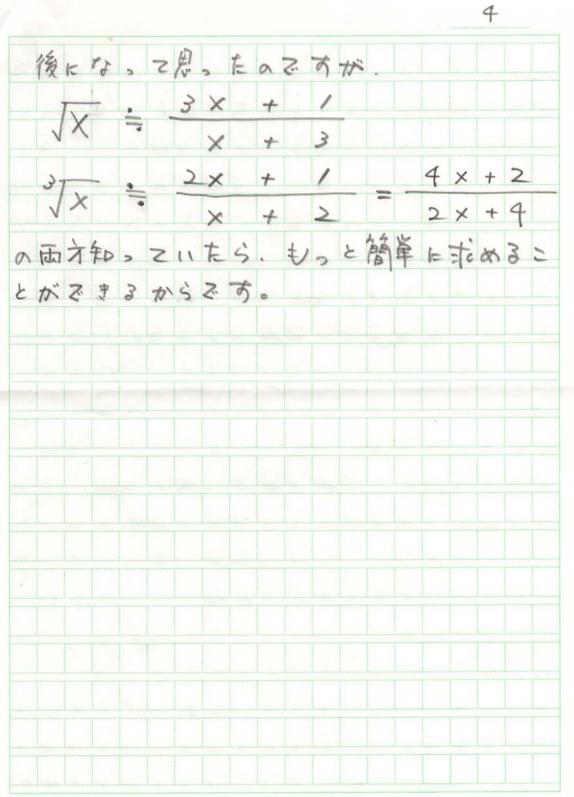
武田 利一 樣 2019.1.17 林印英 久留島義太さんがどのようにして、平才零 豹術を作り上げたのかを正則連分数の表を使 って考えてみました。 実, 段数, 強弱, 投余 ~ 関係を読みとるこ とがでまます。レポート(2010、11 24)平大零約術を説明する P.3-P.6の該 明よりも関係を知る上でわかりやすい方法で す。 実と強弱の決定には、 $67 = 8^2 + 3$ $19 = 4^2 + 3$ 実の決定には 8×2=16 4x2= 8 強弱の決定には+3の部分を使います。 $\sqrt{67} = 8 + \frac{3}{16} \sqrt{19} = 4 + \frac{3}{2}$ を知っていたのは確実です。和田先生はペル 方程式なのでこの関係は使, こいません。


私の説明方法には問題があります。 167の 場合は、16=5×3+1 $10 = 1 \times 9 + 1$ が見っかりますが、一般には、ノフ目だけし かれめることはできません。 J19 a場合 19=92+3 $4 + \frac{3}{8} = \frac{35}{8} = \frac{35}{8} = \frac{35}{8} = \frac{4 \times 8 + 3}{8}$ 8=2×3+20 292 19=3×5+4 67 5=1×4+1 × 「シの場合 シュニア2+3 はうまくい きました。A2+Bとして、AとBの差が 大きくて、日の小さい場合しか使えるいと見 います。 和田先生の「数の世界」第8章§8アルゴ リズム(計算法)(P.185)には、 「「「の小教部を計算する必要はない。」 とあります。 深川英俊さんの「江戸時代のフェルマーー ペルオ程式の解法「平才零約術」の解説」(

2

教子セミナー 2011.3) P.48-P.54 P. 50 ~ 安惠直円は「平才零約解, a原 文で「この例で示した結果を踏まえて原積」 だけによって小数を使わずに各段数ののをむ めることができるの」と書いています。 開平法を使い 167 を末め、段数,強引、 近似分数の表を「そろばん、を使って作って います。計算を式で表現しようと実行すれば 「小数部分」をそにおまかえることができる ことに気がっきます。 久留書義大さんの平方零約術をめぐ、て、 私と加藤さんは、異なる視点から研究しまし 「し、私は西方とも知ることができ、うれしく 見、こいます。理由があるからです。 ハレー法の一般式 (2002年1年成) $X \stackrel{\overline{N}}{=} (N+1) \times + (N-1)$ $(N-1) \times + (N+1)$ を求めるのに大変に苦労しました。レポート (2011.2.1)では、立才根を異なる 視点で公折しました。

3

2 3 J-JO ZUX20

コクヨ ケー35 20×20

119	正則連分	数の表	气。観察
$\frac{1}{\varepsilon} = \frac{8+3}{3}$	8 = 2+	<u>2+8</u> 3	
3 =====================================	$\frac{6+\varepsilon}{5} =$	1+	3 +
= = = = = = = = = = = = = = = = = = = =	$\frac{7+\varepsilon}{2} =$	3+ <u> </u>	+ &
==	<u>7+E</u> =	()+ <u>2</u>	34
5 =====================================	3+6=	2+ 2	
$\frac{3}{8} = \frac{8+1}{8}$	E = 8+	3	
= 1/3			
上の部分	に着目しま	す。	

宝	F	段数		建马	3	段余	a関係
		2					
6		1	×	5	+	1	
2	=	3	×	2	+	1	
7	-	1	×	5	+	2	
6		2	×	3	+	0	
8	=	8	×	1	+	0	
8	-	2	×	3	+	2	
6	-	1	X	5	+	1	

上の部分に着目します。 段数が決定される部分です。

1

2

				8	=	2	×	S	+	2	
8	-	2	=	6		/	×	5	+	1	
8	-	1	Ŧ	7	=	3	×	2	+	1	
8	-	1	2	2	58	1	×	5	+	2	
8	-	2	2	6		2	×	3	+	0	
8	~	0	=	8		8	×	1	+	0	
8	-	0	=	8		2	×	3	+	2	
		2									
1	7 = -	42.	+ 3	0	4	. 8	領	En	34	す。	
) =	E

強弱の	決定法、			
建动	实	约余	原准引	
3	8	0	+ 3	
5	6	2	+ 3	
2	7	1	+ 3	
5	7	1	+ 3	
3 x 5 =	15 = 6× (6×	2+3 2+3)÷	3=5	
5×2=	10=7× (7×	1+3 1+3)÷	5=2	
2×5=	10 = 7 × (7 ×	1 +3 [+3] ÷	2 = 5	
19=4	f2+30	3(原强	33)を使います。	