
武田利一様 2019.2.6 林利英 平均の方法とアラビアの方法の関係を整理 しました。どちらも重要な方法です。 基本となる考え方と連算術としました。 JA2+B=A+B インドでもちくから JA2+B=A+コム 知られていました。 この式から ① 接線法→ニュートン法(反復使用) ③ 簡便型 の連分数 ③ 穀数展開(キルは レンチャムの表の分析が き、かけであ、たと考えています。) が生まれてきたことは、まちがいないと思い まる。 「19の観察を作り直しました。安島道内 さんの考え方に立った「平う零彩術への道」 がわかりやすくなったと思います。 もしよろしいわば、御意見をお知らせ下さ 1)0

コクヨ ケー35 20×20

開平法 で「同 きれめる	
$\oplus^{83} \otimes -249$.17
€ 5 × -4325	-
€ 8708 × 77500.	-
\$7168 B 783600	·)•
€ 9 × -7845921	÷
8717788 × 77967900 ⊕ 88 -69742304	
€ 7177969 822559600 ⊕ 98 -784601721	-
€71779784 Ø 37957879 ⊕ 4 Ø -34871191	
871779788 3086687	

519 の観	現 (12村の電卓を使って)
195	4. 35889894354
- 4 =	0. 35889894354
+ = (2. 78629964785
- 2 =	0. 78629964785
	7. 27 17797887
- / =	0.27/7797887
÷ = (3. 67944947188
- 3 =	0.67944947188
÷ = (7.47177978847
- / =	0.47177978847
÷ = (2. 11963298225
	0. 11963298225
	8. 35889886879
	0. 35889886879

$$\int \overline{19} = 4 + (2.1.3.1, 2.8)_n = 2468$$

$$\frac{1}{2} \frac{1}{1} \frac{1}{3} \frac{1}{3} \frac{1}{1} \frac{1}{3} \frac{1}{1} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{48}{11} \frac{61}{14} \frac{170}{39}$$

$$(\frac{1}{3})^2 - 19 \times (\frac{1}{3})^2 \frac{1}{11} \frac{1}{14} \frac{170}{39} \frac{1}{39} \frac{1}{11} \frac{1}{14} \frac{1}{39} \frac{1}{39} \frac{1}{11} \frac{1}{14} \frac{1}{39} \frac{1}{11} \frac{1}{14} \frac{1}{39} \frac{1}{11} \frac{1}{11}$$

119	= 4+	(2,1	. 3 . l .	2.8)n#	劃数
33 3	强了	332	强5	333	递1
18	1/2	ン	1/3	X	1/2
	<u>16311</u> -3742				<u>170</u> -39
-61	<u>48</u> -11	-13 3		-4	
4/1	<u>p</u> 2	13	48	61	<u>170</u> 39
1421	3012	4433	16311	20744 4759	57799
	102407/			1.000	9651490
110051	274128	7421			4508361

① 強」の最小分子 1つの がたての規則
の基準になっている。190×2=340
(建1) 170×340-1= 57799
(3) 170×340-1= 57799 (12) 39×340-0= 13260
(333) 1421×340-4 = 483136
$\begin{pmatrix} 333\\ 18 \end{pmatrix} 1421 \times 340 - 4 = 483136 \\ 18 \end{pmatrix} 326 \times 340 - 1 = 110839$
② 上方に数表を拡張する。
(333 1/8) + (333 1/1)
(PBE V.) L PBE V.)

ビオト教をも振うたうる。
(弱3 /8) と(333 /1)
(強5 /2) と強5 /3)
は対応している。
(弱2 /1) と(強1 /2)
は絶対値が対称になっている。

¥	方零約約 (2	留島義太作)
₽	19=4 +3	
	4 第1漸近数	
Z	2 x 4 = 2x3+2	
	$2 \times 4 - 2 = 6$	乙段实
	$\frac{6\times2+3}{3}=5$	乙強数
•	$\frac{4x^2 + 1}{1x^2} = \frac{9}{2}$	第2漸近数
丙	6 = ()× (5)+ 1	
	$2 \times 4 - 1 = 7$	丙段実
	$\frac{7\times1+3}{3}=2$	丙弱数
	$\frac{9 \times 1 + 4}{2 \times 1 + 1} = \frac{13}{3}$	第3 漸近数
J	7=3×2+1	
	$2 \times 4 - 1 = 7$	丁段実

	分母	分子	強弱	実	段数	段余
甲	.1	4	原3	8.		
Z	2	.9	強5	6	2	2
丙丁	. 3	13	弱之	7	0	1
1	11	48	強5	7	3	1
					•	
	<u>7 × /</u>	+3=	3	丁預	数	
-	<u>13 x</u> 3 x	3+ 3+ :	$\frac{1}{2} = \frac{48}{11}$	第4	漸近巻	E
丙	弱2を	使う	(後5とは	さまれ	213)
13	2 =	13				
13	3 X 13	+/=	170	3	纷子	
3	3 X 13	=	39	3维	分母	
$\frac{13}{3}$ +	2 2×13×	-=	13×13+ 3×13	1	*	

平方零約術 への道
電卓の桜(値を式を使って表現する)

$$\overline{(q)} = + \sqrt{(q)} - 4$$

 $\sqrt{(q)-4} = \frac{\sqrt{(q)+4}}{\sqrt{(q)-4}} = \frac{\sqrt{(q)-4}+8}{\sqrt{(q)-2}} = 2 + \frac{\sqrt{(q)-2}}{\sqrt{(q)-2}}$
 $\frac{3}{\sqrt{(q)-4}} = \frac{3(\sqrt{(q)+2})}{\sqrt{(q)-2}} = \frac{\sqrt{(q)+2}}{\sqrt{(q)-4}} = \frac{\sqrt{(q)-4+6}}{\sqrt{(q)-4}}$
 $= 0 + \frac{\sqrt{(q)-3}}{\sqrt{(q)-3}} = \frac{\sqrt{(q)+3}}{\sqrt{(q)-3}} = \frac{\sqrt{(q)-4+7}}{\sqrt{(q)-3}} = \frac{\sqrt{(q)-4+7}}{\sqrt{(q)-4+7}} = \frac{\sqrt{(q)-4+7}}{\sqrt{(q)-4+7}} = \frac{\sqrt{(q)-4+7}}{\sqrt{(q)-4+7}} = \frac{\sqrt{(q)-4+6}}{\sqrt{(q)-4+7}} = \frac{\sqrt{(q)-4}}{\sqrt{(q)-4+7}} = \frac{\sqrt{(q)-4+6}}{\sqrt{(q)-4+7}} = \frac{\sqrt{(q)-$

hh 3:2 ()
$$\sqrt{19} = \sqrt{19} - 4 + 4 \ge \frac{1}{2} + \frac{1}{3} + \frac{1}{3}$$

(2) $1 - \frac{1}{2} + \frac{3(\sqrt{19} + 4)}{3} = \frac{\sqrt{19} + 4}{3} = \frac{\sqrt{19} - 4 + 9}{3}$
 $= \frac{3}{\sqrt{19} - 4} = \frac{3(\sqrt{19} + 4)}{3} = \frac{\sqrt{19} + 4}{3} = \frac{\sqrt{19} - 4 + 9}{3}$
 $= \frac{9}{\sqrt{19} - 4} = \frac{1}{2}$
 $\frac{1}{\sqrt{19} - 4} = \frac{1}{2}$
 $2 + \frac{\sqrt{19} - 2}{3} = 2.78629964784$
 $1 + \frac{\sqrt{19} - 3}{5} = 1.2717797887$
 $3 + \frac{\sqrt{19} - 3}{5} = 3.67944947177$
 $1 + \frac{\sqrt{19} - 2}{5} = 1.4717797887$
 $2 + \frac{\sqrt{19} - 4}{5} = 2.11963298118$
 $8 + \frac{\sqrt{19} - 4}{7} = 8.35889894354$

$$\int \overline{IQ} = 4 + \varepsilon \quad \varepsilon = \sqrt{IQ} - 4 \quad ID = 0$$

$$\int \overline{IQ} = 4 + \varepsilon \quad \varepsilon = 4 + \frac{1}{16}$$

$$\frac{1}{\varepsilon} = \sqrt{IQ} - 4 = \frac{\overline{IQ} + 4}{19 - 16} = \frac{\overline{IQ} + 4}{3}$$

$$= \frac{4 + \varepsilon + 4}{3} = \frac{8 + \varepsilon}{3} = 2 + \frac{2 + \varepsilon}{3} = 2 + \frac{1}{32 + \varepsilon}$$

$$= \frac{3}{2 + \varepsilon} = \frac{3}{2 + \sqrt{IQ} - 4} = \sqrt{IQ - 2}$$

$$= \frac{3(\sqrt{IQ} + 2)}{19 - 4} = \frac{3(\sqrt{IQ} + 2)}{15} = \frac{\sqrt{IQ} + 2}{5}$$

$$= \frac{4 + \varepsilon}{5} = 0 + \frac{1 + \varepsilon}{5} = (1 + \frac{1}{5})$$

$$= \frac{5}{1 + \varepsilon} = \frac{5}{1 + \sqrt{IQ} - 4} = \frac{5(\sqrt{IQ} + 3)}{\sqrt{IQ} - 3} = \frac{5(\sqrt{IQ} + 3)}{(4 - 9)}$$

$$= \frac{1(\sqrt{IQ} + 3)}{10} = \sqrt{IQ} + \frac{3}{2} = \frac{4 + \varepsilon + 3}{2} = \frac{7 + \varepsilon}{2}$$

$$= \frac{3}{2} + \frac{1 + \varepsilon}{2} = 3 + \frac{1}{2}$$

$$\frac{2}{1+\varepsilon} = \frac{2}{1+\sqrt{19}-4} = \frac{2}{\sqrt{19}-3} = \frac{2(\sqrt{19}+3)}{19-9}$$

$$= \frac{2(\sqrt{19}+3)}{10} = \sqrt{19+3} = \frac{4+\varepsilon+3}{5}$$

$$= \frac{2+\varepsilon}{5} = 0+\frac{2+\varepsilon}{5} = 1+\frac{1}{5}$$

$$= \frac{5}{2+\varepsilon} = \frac{5}{19-4} = \frac{5}{\sqrt{19-2}} = \frac{5(\sqrt{19}+2)}{19-4}$$

$$= \frac{5(\sqrt{19}+2)}{15} = \sqrt{19-2} = \frac{4+\varepsilon+2}{3} = \frac{6+\varepsilon}{3}$$

$$= \frac{2+\varepsilon}{5} = 2+\frac{1}{\frac{5}{5}}$$

$$= \frac{3}{\sqrt{19}-4} = \frac{3(\sqrt{19}+4)}{19-16} = \frac{3(\sqrt{19}+4)}{3}$$

$$= \frac{\sqrt{19}+4}{15} = \frac{4+\varepsilon+4}{1} = 8+\frac{1}{5}$$

$$= \frac{\sqrt{19}+4}{5} = \frac{4+\varepsilon+4}{15} = 8+\frac{1}{5}$$

$$= \frac{1}{5} = \frac{1}{5} = \frac{1}{5}$$

「19 正則連分数の表の観察
$\frac{1}{\varepsilon} = \frac{8+\varepsilon}{3} = 2 + \frac{2+\varepsilon}{3}$
$\frac{3}{2+\mathcal{E}} = \frac{6+\mathcal{E}}{5} = (1) + \frac{1+\mathcal{E}}{5}$
$\frac{5}{1+\epsilon} = \frac{7+\epsilon}{2} = 3 + \frac{1+\epsilon}{2}$
$\frac{2}{1+\epsilon} = \frac{7+\epsilon}{5} = (1) + \frac{2+\epsilon}{5}$
$\frac{5}{2+2} = \frac{6+2}{3} = 2+\frac{2}{3}$
$\frac{3}{2} + \frac{8}{1} = \frac{3+8}{1} = \frac{2}{7}$
$\frac{1}{8} = \frac{1}{3}$
上の部分に着目します。

段数が決定される部分です。

	宝	殿	教	3	色引		段余	a 18/1	係
	8	=	2	x	3	+	2		
	6	e	1	×	5	+	1		
	2		3	×	2	+	1		
	2	Ŧ	1	×	5	+	2		
	6		2	×	3	+	0		
	8	-	8	×	1	+	0		
	8	2	2	×	3	+	2		
	6	z	1	×	5	+	1		
2-7 19=						-	$=\frac{35}{8}$		
35 = 8 = 3 = 2 =	2	× 3 × 2	+2 +1		-10	4	1/2 9/2	1/ 3/3	1/2 35/8

实内决定法	3魚3多の	涞定法、		
8 = 2 × 3 + 2	理动	实	約余	原准引
$8 - 2 = 6 = 1 \times 5 + 1$	3	8	0	+ 3
8 - 1 = 7=3×2+1	2	6	2	+ 3
$8 - 1 = 7 = 1 \times 5 + 2$	2	7	1	+ 3
8 - 2 = 6=2×3+0	2	7	1	+ 3
$8 - 0 = 8 = 8 \times 1 + 0$) v. F.	. ~ /		
8 - 0 = 8=2×3+2	3×5=			
8-2=6=1×5+1	5 × 2 =		×2+3)= ×1+3	-3 = 5
19=4+3 の4を使います。		()	×1+3) ÷	5=2
(4×2=8)-(1段上の務余)=実	2×5=	10 = 7	× [+3	
		(7)	× (+3)÷	2 = 5

19=42+3の3(原理弱)を使います。

原准引

+ 3

+ 3

+ 3

+ 3

[别解]

167 0	n場合		
	82+3	167 = 8	3+3-16+
8	3/16	3/16	3/16
1 8	131	2120	34313 4192
3° 33 1 3	强9	33 27	3色
3431	3 = 8 × 1	4192+7	רר
419	2 = 5 x	777 + 3	• 7
777	= 2 ×	307 + 10	\$ 3
307	= ×	163 + 10	44
163	= (×	144 + 1	9
144	= 7×	19 + 11	
19	= / x	11 + 8	
11	= / X	8+3	
8	= 2 ×	3 + 2	

	構造 洋●・	を想定 予想	けた	3.	→ Y, -	Y, +/2.	→(½) 強1
	8	1/5	1/2	Y.	Y.	Yn	
10	8	41	90	131	221	1678	
嗟 /	33 3	港。	33	建9	33 2	3崔9	
		を使		2	16=	微 強弱 段第 5 × 3 + 1	
r-	a and the second	8× . 5× .		. 1		2 × 6+0 1 × 7+0	and the second second second
2/2	59	ーを得	5	L	10 =	1 × 9 + 1	
21	120 259 48 19	= 5 = 5 = 1) × 1 5 × 4 2 × 1 1 × 1	59+ 8+ 9+ 0+	17 # 10 <u>3</u> 9 ¹	の関係がれ いば ユークリ 除法 を まわなくても	ット

170555 729	
39128 2×170555×39128	
$19 = 4^2 + 3$ $\sqrt{19} = 4 + -$	3型連分数
3/8 3/8 3/8	3/8
$\frac{1}{0} \frac{4}{1} \frac{35}{8} \frac{292}{67} \frac{2441}{560}$ $\frac{1}{1} -3 = 9 -27 = 81$ $(2441x3 + 20404x8 = 17)$	$\frac{20404}{4681}$
$\frac{3}{8} \begin{pmatrix} 2 + 4 / x & 3 + 2 & 0 & 4 & 0 & 4 \\ 5 & 6 & 0 & x & 3 + 4 & 6 & 8 & / & x & 8 & = 17 \\ 5 & 6 & 0 & x & 3 + 4 & 6 & 8 & / & x & 8 & = 3 \\ \end{pmatrix}$	9128 720
170555= Ax 39128+14	043
39128= 2×14043+11	042
$14043 = 0 \times 1/042 + 30$	0/
11042=3×3001+203	9
3001=0x2039+962	
2039= 2×962+115	
962= (8×115+42	
115=2×42+31 11=	1×9+2
42 = 1 × 31 + 11 9 =	4×2+1
17 3/=2×11+9 2=	2×1+0

①平均の方法(基本となる考え方)
$\frac{A+B}{2} \rightarrow \sqrt{A \cdot B} \rightarrow \frac{2 \cdot A \cdot B}{A+B}$
③ アラビア の方法 (速算術)
$A + \frac{B}{2A} > \sqrt{A^2 + B} > A + \frac{B}{2A + 1}$
3
(7) 簡便型 の連分数
$\sqrt{19} = 4 + \frac{3}{8+}$ $\sqrt{A^2 + B} = A + \frac{B}{2A+}$
(か ユークリッドを除法を使って分析した連分数
(分子は / なので省略する)
$\sqrt{19} = 4 + (2.1.3.1.2.8)_n$
()の内が奇数の場合は 2n
JZ= (+ (2)2n [2周することで強弱に対応する]
$\sqrt{13} = 3 + (1, 1, 1, 1, 6) \ge n$ 18

単均の方法

$$\frac{4}{1} + \frac{1\times19}{4} = \frac{16+19}{8} = \frac{35}{8} = \frac{4+\frac{3}{8}}{4+\frac{3}{8}}$$

$$\frac{\frac{35}{8} + \frac{8\times19}{35}}{2} = \frac{2441}{560} = \frac{35-\frac{9}{8}-\frac{9}{2\times8\times35}}{8-\frac{9}{2\times8\times35}}$$

$$\frac{2441}{2} + \frac{560\times19}{2733920} = \frac{11916881}{2733920}$$

$$\frac{4^{2} - 1^{2}\times19}{2} = \frac{-3}{35^{2} - 8^{2}\times19} = 9$$

$$2441^{2} - 560^{2}\times19 = 81$$

$$11916881^{2} - 2733920^{2}\times19 = 6561$$

$$-3 = (-3)^{2} \quad (\%)^{2} - (\%)^{2} \times 19$$

$$9 = (-3)^{2} \quad (\%)^{2} \times 19$$

$$81 = (-3)^{4}$$

$$6561 = (-3)^{8}$$

① アラビアの方法は「平均」の方法を分析
することでみつけることができる。
$\int A^2 + B = A + \frac{B}{2A}$
$\sqrt{19} = \sqrt{4^2 + 3} = 4 + \frac{3}{8} + \frac{3}{4 \times 2}$ $(3) = \sqrt{4^2 + 3} = 4 + \frac{3}{8} + \frac{3}{8} + \frac{3}{4 \times 2}$
② 强弱を使って近似分数の精度を良くする
方法 がわかる。
③「平均」の才法は、2次収束である。
$(-3)' \rightarrow (-3)^2 \rightarrow (-3)^4 \rightarrow (-3)^8$
0-3-09-081-+@6561
④ 「19=4+3+型連分数は一次収束で
基準となる分数引を作り出す。
$ \bigcirc -3 \rightarrow \bigcirc 9 \rightarrow \bigcirc -27 \rightarrow \bigcirc 81 \rightarrow \bigcirc $