武田 利一様
おいそがしい日々をすごされていると思います。これから寒い日が続きます。お体 に気をつけて下さい。平方根を求める考え方あれやこれや のレポートで，私 がこれまで学習してきたことをまとめてみました。いくつかの疑問も生まれてきます。 （1）（2）（3）は不等号の式ですが（4）と気は等号の式に変化しています。この過程 ではどのような考え方の変化があったかということ。（9と（5）を分けへだてる考え方 はどこからきたのかということ。（2）と（5）と（10）の関係はどうだったのか。 （1）の左边と右辺を加える実験と（3）のた边の関係が将かりました。発見と位置的比 の関侯だと思いました。（10）のオ法は立方根の場合にも応用できます。ところが， この場合では，$x^{\frac{1}{N}}>\frac{(N+1) x+(N-1)}{(N-1) x+(N+1)}$ の式にもどる必要があります。 この式によって，2011年の2月の実験で知った $a+\frac{x}{3 a^{2}}>\sqrt[3]{a^{3}+x}>a+\frac{a \cdot x}{3 a^{3}+x}$ と $\sqrt{1+x}>1+\frac{2 x}{4+x}$ が同一の考え方であることを知ることができました。私は，この元になる，基本式がいったい何なのかねかりません。2002年の春に実験で運よく知ったものです。もしよろしければ，お知らせ下さい。昨年の学習で知ったオ法です。 $\sqrt{19}$ を倒にします。 $19=4^{2}+3$ を使って

$$
\begin{equation*}
4+\frac{24}{67}=4+\frac{3}{8+\frac{3}{8}}<\sqrt{19}<4+\frac{3}{8+\frac{3}{9}}=4+\frac{27}{75}=4+\frac{9}{25} \tag{19.0096}
\end{equation*}
$$

（18．9940）
平方数の表を使った簡単な平方根の近似値を求める方法だと思いました。林龵英

$$
\begin{align*}
& \frac{a+b+2 \cdot a \cdot b}{2+a+b} \\
& \frac{a+b}{2}>\sqrt{a \cdot b}>\frac{2 \cdot a \cdot b}{a+b} \\
& \text { (} a \cdot b \rightarrow 1 \text {) } \\
& \frac{\frac{10}{10}+\frac{11}{10}}{2}=\frac{21}{20} \frac{20}{21} \times \frac{11}{10}=\frac{22}{21}\left[A+\frac{x}{2 A}>\sqrt{A^{2}+x}>A+\frac{x}{2 A+1}\right. \tag{2}\\
& \begin{aligned}
\frac{21+22}{20+21} & =\frac{43}{41} \quad A+\frac{x}{2 A+\frac{x}{2 A}}<\sqrt{A^{2}+x}<A+\frac{x}{2 A+\frac{x}{2 A+1}} \\
& =1+\frac{2}{41}
\end{aligned} \tag{3}\\
& =1+\frac{2}{41} \quad A=1 \\
& \sqrt{1+x}>1+\frac{x}{2+\frac{x}{2}}=1+\frac{2 x}{4+x} \\
& x^{\frac{1}{N}}>\frac{(N+1) x+(N-1)}{(N-1) x+(N+1)} \\
& \sqrt[3]{1+x}>1+\frac{x}{3+x} \\
& 3 \rightarrow 4
\end{align*}
$$

$$
\begin{align*}
& \text { (4) } \\
& \begin{array}{l}
\sqrt{A^{2}+x}=A+\frac{x}{2 A+\frac{x}{2 A+\frac{x}{2 A+\frac{x}{2 A}}+\ddots}} \\
\sqrt{7}=2+\frac{3}{4+\frac{3}{4+}}
\end{array} \tag{5}\\
& \sqrt{7}=2+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{4}}}} \\
& \sqrt{1+x}=1+1 / 2 x-1 / 8 x^{2}+1 / 16 x^{3}-5 / 128 x^{4}+ \\
& \sqrt[3]{1+x}=1+1 / 3 x-1 / 9 x^{2}+5 / 81 x^{3}-10 / 243 x^{4}+ \tag{10}
\end{align*}
$$

