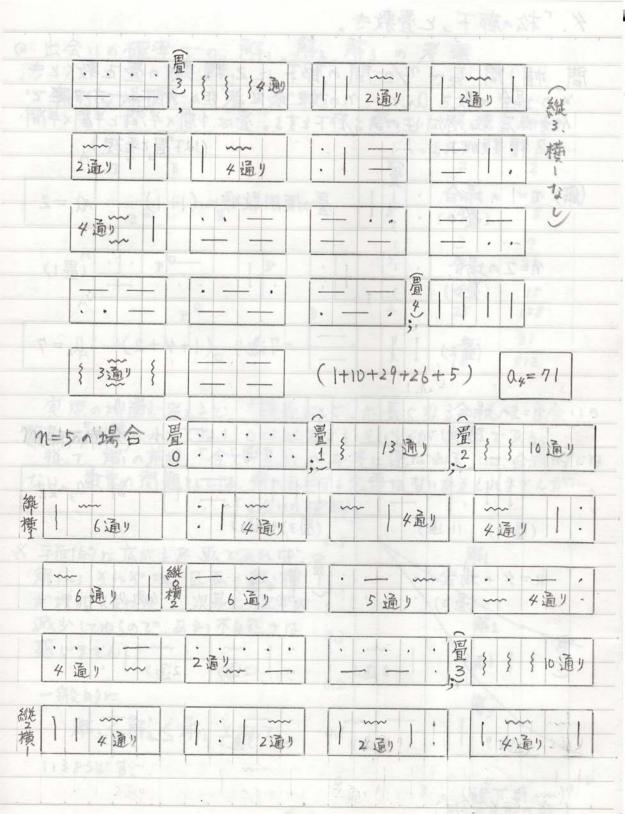
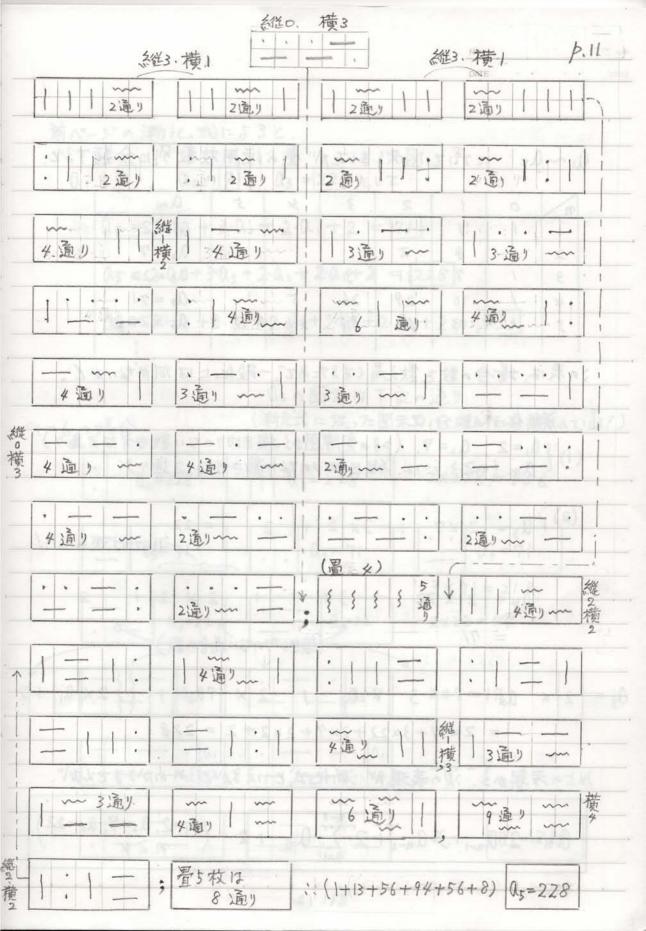
4、「松の廊下」と畳敷き。

問、幅間、長さか2間の廊下に又種類の畳を敷くとき れの場合の数で Qれとし、かの式で表せ。(但し、那下の一方は庭で 他方は座敷、方何性のある廊下とする。畳は、1間×半間×半間 の2種類がある。) (以下置注表現) (解) M=1 g場合. · (男 0) · 骨の便用数順に(|+1) a = 2M=2の場合 (畳口) の了通り (1+4+2) 02 = 7 (置2) (畳1) 2013の場合 3 (1+7+11+3) (圖2) か=火の場合 4面》 (畳の) 6雨り 6通り

(~~ は可動)





Qi~Qs について図示しましたが畳の使用枚数別に分類すると、

n	0	1	2	3	*	5	an	1
1	1	1	-		I-I said		$Q_1 = 2$	
2	1	4	2	PER I		U ALP	0,2 = 7	1
3	/	7	11	3			Q3 = 22	
4	/	10	29	26	5	-	Q4 = 71	
5	1	13	56	94	56	8	as = 228	

この表は、場合の数を数之易くするためで、一般化には何かないかど。

I. 潮化式にかって

(1) { Q1=2, Q2=7. (トタの実際図が3総区切りのない敷き方は3遍り) Qn (m≥3 では、総区切りのない敷き方は、2通り)

以上の考察から、次の表現が漸化式といえるかとづかめかりませんが、

$$\alpha_{n} = 2 \cdot \alpha_{n-1} + 3 \cdot \alpha_{n-2} + 2 \cdot \sum_{k=1}^{n-3} \alpha_{k} + 2 \cdot \binom{\alpha_{1} = 2, \alpha_{2} = 7, \alpha_{3} = 22}{n \ge 4}$$

前ハージの潮化之がによると、

$$Q_1 = [2], Q_2 = [7], Q_3 = [22] \times LZ$$

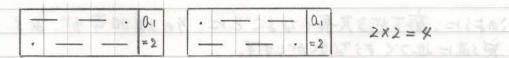
$$0 = 2 \cdot 0 + 3 \cdot 0 + 2 \cdot 0 + 2 = 71$$

$$05 = 2 \cdot 0 \times + 3 \cdot 0 + 2 \cdot 0 + 2 \cdot 0 + 2 = 228$$

$$Q_6 = 2 \cdot Q_5 + 3 \cdot Q_8 + 2 \cdot Q_3 + 2 \cdot Q_4 + 2 \cdot Q_1 + 2 = \boxed{733}$$

Q6の図示は下記の遠り

(漸化式に従った図示は、合理的に分類されている!)



$$p = 2 \cdot \alpha_{n-1} + 3 \cdot \alpha_{n-2} + 2 \cdot \sum_{k=1}^{n-3} \alpha_k + 2 \quad (n \ge 4)$$

を実形して $\alpha_n = \alpha_{n-2} + 2 \cdot \sum_{k=1}^{n-1} \alpha_k + 2$ (本字の ランクを 1つ)

 $\alpha_{n-1} = \alpha_{n-3} + 2 \cdot \sum_{k=1}^{n-2} \alpha_k + 2$ (本字の ランクを 1つ)

 $\alpha_n = \alpha_{n-1} = \alpha_{n-2} - \alpha_{n-3} + 2 \cdot \alpha_{n-1}$

に 連介がない は、 $\alpha_n = 3 \cdot \alpha_{n-1} + \alpha_{n-2} - \alpha_{n-3}$ ($\alpha_1 = 2, \alpha_2 = 7, \alpha_3 = 22$ $n \ge 4$

一般項 は Hかりませんので Q 7 以下は。 (
$$06=733$$
 , $0.5=228$)
$$0.7=3.733+228-71=2356$$

$$0.8=3.2356+733-228=7573$$

$$3.21434倍$$

$$3.21434倍$$

 $Q_{10} = 3.7573 + 2356 - 733 = 24342$ $Q_{10} = 3.24342 + 7573 - 2356 = 78243$ $Q_{10} = 3.24342 + 7573 - 2356 = 78243$

このように、廊下が3尺長くなるごとに、その増加率が、ある一戸1直に近つてような気がします。

2018,11.30.