質問<878>2002/6/24
from=ヤス
「対数関数」
(1) x=log3の√___のとき、 5+2√6 (3のx乗+3の-x乗)(3のx乗-3の-x乗) (2) (log2の3)(log3の4)(log4の5)・・・(log63の64) (3) log8の(cos30°+sin150°/cos330°+sin210°)-2log8の(1+tan240°)
お便り2002/6/24
from=toshi
①x=log(3)[1/{5+2*6^(1/2)}]^1/2の時 x=log(3){3^(1/2)-2^(1/2)}より 3^x=3^(1/2)+2^(1/2) 3^(-x)=3^(1/2)-2^(1/2) これを式に代入すれば与式=4*6^(1/2) ②log(n-1)n の底を2に揃えるとlog(2)n/log(2)(n-1) 最初の項から書くと、前後で約分できるので結果log(2)64=6が残る。 ③最初の項を計算するとlog(8){3^(1/2)+1}^2-log(8)2 二つ目の項はlog(8){3^(1/2)+1}^2となる。 よって、-log(8)2=-1/3である。 なお、log(n)(x)はlognのxと同値であり、最初の括弧を底とする。
お便り2002/6/25
from=phaos
式の書き方が破綻しているのでちゃんとした式の書き方をしてください。 (1) x = log_3 √(5 + 2√6) = log_3 (√2 + √3) 3^x = √2 + √3, 3^(-x) = 1/(√2 + √3) = √3 - √2. 故に, 与式 = (√2 + √3 + √3 - √2)(√2 + √3 - √3 + √2) = (2√3)(2√2) = 4√6. (2) 与式 = log_2 64 = 6. (3) 与式 = log_8((√3/2 + 1/2)/(√3/2 - 1/2)) - 2 log_8 (1 + √3) = log_8 (√3 + 1)/(√3 - 1) - log_8 (√3 + 1)^2 = log_8 (√3 + 1)/((√3 - 1)(√3 + 1)^2) = log_8 (1/((√3 - 1)(√3 + 1)) = log_8 (1/(3 - 1)) = log_8 (1/2) = - log_8 2 = - 1/log_2 8 = - 1/3.